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Part 1 

• A.  basics of linear systems including examples of 
some common electronics and mechanical systems 

• B. introduction to some needed mathematics.  



This work combines three separate disciplines 
It is a bit heavy and requires several sittings. 

The goal is to present it in an informal way so 
that the connections are obvious and can be 
later explored in a deeper way.  

1) Understanding and modeling physical 
systems such as electronics or mechanical 
systems.    

2) Elementary Mathematical analysis and 
Fourier transforms. 

3) Some elements of probability and statistics.   



• There are many practical mechanical or electrical systems in which the output 
is linearly related to the input excitation.  

• If the excitation is multiplied by a constant then the response is also.  
(homogeneity)

• If there are multiple sources of excitation then the response due to each one 
adds linearly in the total response. (superposition).  

• The frequency of the response will be the same as the frequency of the 
excitation. This property allows analysis of such systems using Laplace or 
Fourier transforms.  

• This lecture is an introduction about various basic mathematics related to 
such systems. It is particularly useful for understanding electronics, signal 
processing, or mechanics of vibration.

Input:  i Output: v

Linear  
system



Outline

• Some simple examples of linear systems.  

• Impulse response function and noise 
waveforms. 

• Some methods for understanding random noise

• Introduction to Fourier transforms and discrete 
Fourier transform.   



High pass,  differentiator

Vo(t)+Q /C =Vi (t)
dVo(t)
dt

+ I(t) /C = dVi (t)
dt

 where I(t) is the current.  

Vo(t) = I(t)× R therefore 
dVo(t)
dt

+ Vo(t)
τ

= dVi (t)
dt

  where τ = RC  is called the time constant. 

Use Vi (t) = vie
iωt  for the input and Vo(t) = voe

iωt  as output. 
Take the real part later to get back the answer to a sinusoidal excitation. 
iωvo + vo /τ = iωvi

vo = vi ×
iω

iω +1/τ
= vi

1
1+1/ (τω )2⎡⎣ ⎤⎦

1/2 e
iθ  where θ = Arctan(1 /τω )

 Notice that the output has lower amplitude and shifted in phase. 
If (ωτ )≫1 then the filter just passes the input through. 

For any Vi, we can calculate the 
frequency components (or 
Fourier transform), multiply by 
the filter function, and invert. 
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Example 1



High pass,  differentiator
How to calculate for 
discrete data

Vo(t)+Q /C =Vi (t)
dVo(t)
dt

+ i /C = dVi (t)
dt

Vo = RC
dVi
dt

− dVo
dt

⎛
⎝⎜

⎞
⎠⎟

For discrete data use j as the index over time bins of Δt

Vo(t j ) = RC
Vi (t j )−Vi (t j−1)

Δt
−
Vo(t j )−Vo(t j−1)

Δt
⎡
⎣⎢

⎤
⎦⎥

Vo( j) =α (Vi ( j)−Vi ( j −1))+αVo( j −1)
α = (RC / Δt) / (1+ RC / Δt)
Notice that Vo  changes depending on the change in the input Vi

This is why this is called the differentiator.  

7

Notice that this will filter out DC 
and low frequency waveforms



Low pass,  integrator. 
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Vo(t) =Q /C,        and     Vi (t)−Vo(t) = R ⋅ I(t)
dVo(t)
dt

= Vi −Vo
τ

 where τ=RC

Use Vi (t) = vie
iωt  for the input and Vo(t) = voe

iωt  as output. 
Take the real part later to get back the answer to a sinusoidal excitation. 
iωvo + vo /τ = vi /τ

vo = vi ×
1/τ

iω +1/τ
= vi

1
1+ (τω )2⎡⎣ ⎤⎦

1/2 e
iθ  where θ = Arctan(τω )

Notice that for ωτ ≪1 the filter just passes the input through
For discrete data with j index over time bins(Δt)
Vo( j) =αVo( j −1)+ (1−α )Vi ( j)
α = (RC / Δt) / (1+ RC / Δt)
Notice that Vo  could just keep increasing if Vi  is constant ⇒  integrator. 

Example 2
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Set RC = 1 Output if Input is delta(t) Output if Input is Step 
function u(t) = 1 for t>0
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δ (t)− e− t e− t

e− t 1− e− t



Simple 1 DOF system

k

c

m

x(t)
m d 2x
dt 2 + c dx

dt
+ kx = 0

 Set  x(t) = Xeiωt

−ω 2mX + iωcX + kX = 0    This yields a solution for ω

ω = -i c
2m

± k
m

1− c2

4mk

Set ζ = c
2mω n

, ω n
2 = k

m
 is the natural frequency 

ω = −iζω n ±ω n 1−ζ 2 ,  the complete solution is then 

x(t) = e−ξωnt (x0 Cos(ω dt)+
v0 + ξω nx0

ω d

Sin(ω dt))

where ω d =ω n 1−ζ 2  is called the damped frequency.  At ζ =1 (critical damping), there is no oscillation
If we assume small damping, then the intercept of this motion is 
the initial displacement x0  and the initial slope corresponds to ~v0
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This is not a forced system and it will respond in case of an initial 
condition that is non-zero.  



Example 3 forced mechanical system 

k

c

m

Units     k: N/m,    c: N/m/s
f(t): applied force in N

m d 2x
dt 2 + c dx

dt
+ kx = f (t)

Fourier: x(t)⇔ X(ω ); f (t)⇔ F(ω )
−ω 2mX + iωcX + kX = F(ω )

X
F
= 1
k

1
(1−ω 2 /ω n

2 )+ 2i(ω /ω n )ζ
⎡

⎣
⎢

⎤

⎦
⎥

Input:  f(t)

Output:  x(t)

ω n
2 = k

m
ζ = c

2ω nm

Natural Freq = νn =
ω n

2π
Hz

Damping = ζ   is unitless
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ξ = 0, 0.2, 0.4, 0.6, 0.8,1.0

This is called the transfer function. The 
height of the response at the natural 
frequency depends on the damping. 



Example 4: CR-RC4 filter

Purpose is to create a Gaussian shaped pulse from an initial step 
voltage.  The height of the pulse should be the voltage step.  The 
peak of the pulse is given by the peaking time which is n 𝜏=RC = 1/𝛾
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CR-RC4 we can just multiply the transfer functions  to 
get the complete transfer function. Using Laplace 
transforms we get.  (is this case s -> iω to get Fourier)

Vo(s) =Vi (s)×
s

s +1/τ
× 1
(s +1/τ )4

This can be inverted to obtain time domain 
pulse for some Vi.  For a unit step pulse

There are ways of making this more 
symmetric by introducing complex 
“poles” in the transfer function.  

Vi (s) = 1/ s

Vo(t) =
t 4

4!
e− t /τ

13



The ideal preamp produces a step function called a “tail 
pulse”. This step must be shaped.

Input is step function 
with a CR-RC filter. 
Peak is at time =1*𝜏

Input is step function 
with a CR-RC4 filter. 
Peak is at time =4*𝜏 
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Input is step function 
with a RC5 integrator. 
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delta response will 
have an undershoot

work out the response to a square pulse



The real input pulses are pulses with some widths. Or they 
have a long shaping time to bring them back to baseline.  
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Output after  
RC5
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More about shaping, let’s start with a 5th order shaper
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F(s) = 1
(s + a)5 → f (t) = t

4

4!
e−at

This has a maximum at t = 4 / a

f (4 / a) = 32
3
e−4

a4 = 0.195
a4

f (15 / a) ≈ 0.6 *10−3!It takes 15 times to restore baseline.
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Complex poles allow the baseline to be 
restored much faster.  

F(s) = 1
(s + a)((s + acos(φ))2 + a2 sin2 (φ))((s + acos(ϕ ))2 + a2 sin2 (ϕ ))

→ f (t) = Ae−at + Bie
−rit cos(cit + γ i )

i=2,3
∑
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φ = 22.9o,ϕ = 47.2o

In addition, we can adjust the 
amplitude to obtain the same peak 
for any value of shaping time.

Ohkawa,Yoshizawa,Husimi, NIM 138, 85-92, 1976



If you want to explore more….(also look at control theory )
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There is an extensive theory behind optimum shaping of  analog pulses using either 
analog or digital methods. Digital shaping can be done by gated integration. Shaping 
using analog electronics is called time-invariant shaping. It uses a suitable configuration
of poles to create a semi-Gaussian output.  Examples of  unipolar shaping are 

T (s) = 1
(s + p)n

 r-shapers n = 2,3,4...

T (s) = 1

[(s + ri )
2 + ci

2 ]
i=1

n/2

∏
    c-shapers n = 2,4,6...

ri  and ci  are real and imaginary parts of complex-conjugate poles. 
Time domain pulses can be obtained by using partial fraction expansion and inverse Laplace

f (t) = 1
(n −1)!

t n−1e− tp     this is for r-shapers n = 2,3,4,...

f (t) = 2 Ki e
−rit Cos(−cit + Arg(Ki ))      for c-shapers n = 2,4,6...

i=1

n/2

∑
Ki  are obtained from partial fraction expansion. As n increases this becomes more Gaussian. 
The peaking time (τ p ) characterizes the frequencies that are filtered and the noise performance. 
The width (τ w ) or time to baseline defines the rate capability.  For a given τ p ,  the higher the 
order, the shorter the τ w



Noise waveforms at the output 
• Systems will produce random outputs in response to random fluctuations at 

the input or in internal components. These fluctuations could be due to 
thermal motions, statistical fluctuations in electrical currents, or 
environmental disturbances.  

• The waveforms can be thought of as continuous variables of time or they 
could be digitized at discrete intervals. 

• How do we  categorize and analyze these noise waveforms ? Can it be done 
generally for all systems ? 

• We will do this using some mathematical devices. Most important: 

Dirac's delta function and its Fourier transform
δ (t)=0 if t ≠ 0 and

δ (t)dt = 1  and  D(ω ) = 1
2π

δ (t)e− iωt
−∞

∞

∫
−∞

∞

∫ dt = 1/ 2π

For the inverse transform δ (t)= 1
2π

eiωt
−∞

∞

∫ dω

Some of the derivations here 
are considered informal 
because of the use of the delta 
function as well as the use of 
discrete Fourier transforms.  A 
more formal way is to use 
characteristic functions which 
I will explain later.  



Partial bibliography
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• statlect.com digital textbook on probability theory 

• G.F.Knoll’s text book on radiation detectors.  

• For an introduction to the method of characteristic functions see: Matthews and Walker,  
pub. W.A.Benjamin inc. (1970), page 385.

• A. Pullia and S. Riboldi, IEEE transactions on nuclear science 51(4), 2004.  

Analysis of noise is an old subject that is still evolving.  For deeper understanding, 
need familiarity with: 1) real and complex analysis, 2) probability theory, 3) calculus of 
randomness.  

There is a lot of other good material. But some of it is confusing.  Confusion has origins in 
either the material being too dated with old definitions or having sloppy mistakes in units of 
Fourier transforms and power spectra (as pointed out by Millotti). 

http://statlect.com


Take time interval  0 → T
Assume there are N elementary noise excitations in this time interval.
Each characterized by qi

e(t) = qiδ (t − ti )
i=1

N

∑
If each elementary excitation produces a response g(t) (with Fourier transform G(ω )) 
then the noise waveform is given by 

eg(t) = qig(t − ti )
i=1

N

∑
Fourier transform of this is given by 

EG(ω ) = qiG(ω )
i=1

N

∑ e− iωti

We have to examine this function as N →∞

White noise 



Properties of the Fourier transform of a real function
Let g(t) be a real function.  

G(ω ) = g(t)e− iωt dt
−∞

∞

∫               G*(ω ) = g(t)e− i(−ω )t dt
−∞

∞

∫
Therefore G*(ω ) = G(−ω )... is Hermitian 
Examine the symmetry of g(t) based on G(ω ) = G eiArg(G )

g(t) = 1
2π

G(ω )e+ iωt dω
−∞

∞

∫

g(t) = 1
2π

( G(ω )e+ iωt dω
0

∞

∫ + G(ω )e+ iωt dω
−∞

0

∫ )

g(t) = 1
2π

( G(ω )e+ iωt dω
0

∞

∫ + G(−ω )e− iωt (−dω
∞

0

∫ ))

g(t) = 1
2π

( G(ω )e+ iωt dω
0

∞

∫ + G*(ω )e− iωt dω
0

∞

∫ )

g(t) = 1
2π

(G(ω )e+ iωt +G*(ω )e− iωt )dω
0

∞

∫

g(t) = 1
2π

G(ω ) 2cos(ωt + Arg(G(ω )))dω
0

∞

∫
Notice that if G(ω ) is a real function then g(t) is a symmetric function.
g(t) = g(-t)  iff G(ω ) is real. 

This is the asymmetric 
convention

G(ω ) 2  is called the power spectrum.
if g(t) is in volts and we imagine it is applied 

across 1 Ω resistance, then G(ω ) 2  is the amount
of power per unit frequency



Definitions and units
g(t) is a real function. 
A symmetric form of Fourier and Inverse Fourier transforms.

G(ω ) = g(t) e− iωt dt
−∞

∞

∫ ; g(t) = 1
2π

G(ω ) eiωt dω
−∞

∞

∫
If units of g(t) are volts then G(ω ) has units of volts/Hz
set time domain 0 to T  with M samples. 

Δ= T
M

;  define index k =  0,...,  M -1;   tk = Δ i k; gk = g(tk )

Use asymmetric form of Discrete Fourier Transform 

Gl = gke
− i2π l⋅k

M

k=0

M−1

∑ ; gk =
1
M

Gle
i2π l⋅k

M

l=0

M−1

∑
gk and Gl  have the same units.  What is the relation between G(ω ) and Gl ?

G(2π f ) = g(t)e− i2π ft dt ... f = l
N ⋅ Δ−∞

∞

∫

G(2π fl ) = g(t)e
− i2π l

N
t
Δ dt

−∞

∞

∫ ⇒ !Gl = gke
− i2π l⋅k

N Δ
−M /2

M /2

∑

Gl = !Gl ⋅
1
Δ

It is useful to pay attention to the units when plotting Gl

If the normalization is chosen to be symmetric, then ratio is  ( 2π
M
.1/Δ)

Fourier 
transform

Discrete Fourier 
transform



some more simple observations about the DFT 
x0,..., xM−1  are real numbers. Imagine it is a waveform.

Xl = xke
− i2πk l /M

k=0

M−1

∑

xk =
1
M

Xle
i2πk l /M

l=0

M−1

∑
Both of these are M-periodic:  Xl+M = Xl , xk+M = xk
using M-periodicity and that xk  are real:   X− l = Xl

* = XM−l

Take the case of M to be even: 
X0 ∈Real and XM/2 ∈Real; 
X1 to XM/2-1  are complex and XM−1  to XM /2+1  are conjugate.
This means there are only (M / 2 -1)2 + 2 =  M  independent numbers.

Take the case of M to be odd:
X0 ∈ Real
X1 to X(M−1)/2  are complex and XM−1  to X(M+1)/2  are conjugate.
This means there are only (M -1) / 2 × 2 +1= M  independent numbers.

 

Ulk =
e− i2π /M( )lik

M
,l,k = 0,...M −1,  is a unitary matrix, 

and the DFT is a linear matrix transform



non-trivial example (I used symmetric version)
g(t) = e

− tt 4

4!
u(t)⇔G(ω ) = 1

2π
1

(iω +1)5    here u(t) = 1 if  t ≥ 0
0 otherwise

⎧
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Well-known characteristics of the noise waveform

Let eg(t) be the noise output (voltage) at time t.  This is a  real random 
number at time t.  

eg(t) = qig(t − ti )
i=1

N

∑ ⇒ EG(ω ) = qiG(ω )
i=1

N

∑ e− iωti

1) Probability Density Function  P(eg(t)) is independent of t. (stationarity). 
2) The joint probability density  of P(eg(t),  eg(t ')) only depends on (t - t ')
3) The mean eg(t)  = 0  
It is well known that eg(t) has a Gaussian distribution (we will show this)
These items are needed to specify all characteristics of eg(t). 

The variance is given by erms = eg(t)2 = P

ac(τ ) = eg(t).eg(t +τ ) ...Autocorrelation. 
We will show that the ac(t) is simply the inverse Fourier transform of the power spectrum.  
In actuality, one can write down multi-point autocorrelation
acn (τ1,τ 2,...,τ n ) = eg(t)eg(t +τ1)...eg(t +τ n )
For a stationary process all of these must not depend on t. 



Characteristic function method
First we will describe the method of characteristic functions.  
A characteristic function is a Fourier transform of a probability density function (PDF).  
It makes combinations of probabilities easier to calculate and understand.  
X  is a continuous random variable with probability density function P(x) then the 
characteristic function is 

ϕX (k) = P(x)eikx dx   
−∞

∞

∫
This allows easy way to generate moments of the PDF. 
ϕ(k = 0) = 1  since it is the integral of the PDF. 

x = −i ∂ϕ
∂k

(k = 0)

x2 = − ∂2ϕ
∂ki ∂kj

(k = 0) 

If X  and Y  are two random variables and z = f (x, y)   then the Characteristic function for Z is

ϕZ (k) = eikf (x,y)P(x)∫∫ dx Q(y)dy

To get the moments of f (x, y) often it is not necessary to evaluate the integral. 
e.g. f (x, y) = x + y ⇒  ϕZ (k) =ϕX (k).ϕY (k)  .... leave it for you to prove this 



Aside on Gaussian PDF and its characteristic func. 
Characteristic function makes combinations of probabilities easier to calculate and understand.  

P(x1, x2,..., xn ) = Ne
− aijxix j
i≤ j

n

∑
 is a Gaussian multivariate PDF with a mean of 0 for all x.  

N =
(2 ⋅Det[aij ])

-1/2

(2π )n/2
 is the normalization. The matrix aij  has to be positive definite. 

let X = {x1, x2 , ...} and K = {k1, k2 , ...} for short-hand.  

ϕ(k1,k2,...,kn ) = dX ⋅P(X)
−∞

∞

∫ eiK ⋅X = e
− bijkik j
i≤ j

n

∑
 is the characteristic function 

(The Fourier transform of a Gaussian yields a Gaussian;  bij =
[aij ]

−1

2
)

ϕ(K = 0) = 1  since it is the integral of the PDF. 

−i ∂ϕ
∂ki

(K = 0) = xi = 0

− ∂2ϕ
∂ki ∂kj

(K = 0) = xix j = bij  for i ≠ j    and xi
2 = 2bii   for i = j

Homework: work out a method for simulating an n-dim Gaussian variate

The first and second 
moments are obtained 
by differentiation



Aside on Gaussian noise
Now assume that the noise waveform eg(t) is Gaussian. 
eg(t) = 0

eg(t)2 = P  is the mean square noise amplitude (or the total noise power.) 

ac(τ ) ≡ eg(t) ⋅eg(t +τ )  is called the autocorrelation
Now for  x1 = eg(t),  x2 = eg(t +τ 2 ),  x3 = eg(t +τ 3)...xn = eg(t +τ n ) we can 
write a joint probability density function.  It will have a characteristic function

ϕ(k1,k2,...kn ) = Exp(− bijkik j )
i≤ j=1

n

∑
 Notice that all 

bii = P / 2  and bij = eg(t +τ i )eg(t +τ j ) = ac(τ i −τ j )

This means that correlations of any order only depend on the total power 
and the autocorrelation function (which we will prove later to be the 
power spectrum density).  The general rule for obtaining any moment is 

x1
α1x2

α2 ...xn
αn = (−i)α1+α2+...+αn

∂α1+α2+...+αnϕ(k)
∂k1

α1 ∂k2
α2 ...∂kn

αn
k=0

In the Gaussian case only the total power and the autocorrelation is needed to 
completely specify ϕ(K).  



Finish Part 1 
• Linear systems are characterized by a response 

function which, in general, has a complex Fourier 
transform.

• This response function is important to understand the 
random noise waveform that may come from the 
system.  

• In part 2 we will review how the random noise tends to 
Gaussian (central limit theorem). 

• And examine classifications of random noise in terms 
of power spectra.  


